Here Comes the Sun:

Solar Siting for Williams' Electricity Production

Isabelle Zollinger, Cole Whitehouse, Caroline Ro Tanja Srebotnjak, Jason Moran

State of the World

- Joe Biden: goal of 100% carbon-free grid by 2035 (Dec. 2021)
- Massachusetts: net-zero emissions by 2050

Why solar siting at Williams?

- Integral Group ('19-'20): pathways
 to 2050 carbon neutrality
- Strategic Plan ('21): "100% renewable purchased" + increased generation as a goal
- Opportunities on College-owned land?

Solar So Far

- Environmental Center (CES+Zilkha) (58.39 DC kW)
- Horn Hall (50.15 DC kW)
- South Science Building (52.08 DC kW)
- Sawyer Library (81.60 DC kW)
- Farmington Solar Project (76 мw)
- The Log (13.92 DC kW)! and more...

1. What makes a good site?

Our research for (1) ground-mount, (2) roof-mount, and (3) carport systems

Ground-mount systems

1. Human Interest Considerations

- Stockbridge-Munsee Site of Importance
- Current use!
 - Local agricultural economy
 - Recreation
 - CO₂ sequestration

Ground-mount systems

2a.Technical

	(+)	(-)	Data Collection
Topography	Flat, gradual	Unsuitable ecosystem (floodplain, forest, wetland)	Site visit and previous student report
Shading	No tree or building shading	Complete shade	GoogleEarth and site visit
Orientation	South	North	GoogleEarth and site visit

Roof-mount systems

2b.Technical

	(+)	(-)	Data Collection
Roof slope	Flat, gradual	Unusual features	Site visit
Roof material	Standing-seam metal	Slate	GoogleEarth and site visit
Orientation	South	North	GoogleEarth and site visit
Shading	No tree or building shading	Shaded	GoogleEarth and site visit

Roof-mount systems

2b.Technical: A bad example

(-) Slate roof

(-) North-facing roof

(-) Steep, complex roof

(+) Minimal shading from trees, buildings

Carports

2c.Technical

	(+)	(-)	Data Collection
Shading	No tree or building shading	Complete shade	GoogleEarth and site visit

3. Size: Bigger is better!

- Carbon avoided
- Economies of scale, generally system cost

4. Future Considerations

- Roof age and load → structural engineer
- Grid connection → discuss with local utilities
- Ownership structure (PPA) → post-system design

UMass Amherst carport

5.Cobenefits

- Carports → covers cars in rain/snow, charging stations
- Roof-mounted → visibility
- Ground-mounted →
 agrivoltaics potential (if
 Williams acquired new
 undeveloped land)

Williams' Simon Road Solar LLC

2. Combining the Considerations

Any red = elimination

Human Interest

Evaluation matrix ranking (% green)

Generative capacity (estimated)

Final ranking

3. Where could solar be?

Applying our findings to Williams-owned properties

How many acres of land does Williams own?

- Facilities property list has 231 buildings does not include open land
- College should be more transparent about how much they own can't answer the question

Williams-owned

properties on the

Example Top Sites - On-campus

- Directly powersWilliams College
- Visible
- Relatively inexpensive connection
- Smaller sites (rooftop)
- Some previous penetration

On Campus - All

- 130 buildings
- 7 parking lots
- 3 open fields

Already has Solar

- 14 buildings
- Installed, in process, and upcoming
- Labeled green

Zones of Uncertainty

- 4 zones
- 18 buildings
- 1 parking lot
- Do not have 25+ clarity on plans
- Red zones
- Labeled red

Slate roof

- 24 additional buildings
- Not suitable for solar
- Mostly old, mostly small

Other Factors

- 57 additional buildings
- Too small (< 50kW)
- Southern tree shading
- Oddly shaped roof
- Slated for demo

Remaining Sites

- 17 buildings
- Many close to 50 kW threshold
- Top 6 by size and suitability

Chandler Athletic (34 Spring Street)

- 133.2 kW, 72.6 tons of CO₂ avoided annually
- 8.3 homes' yearly energy
- Flat roof
- Close to S orientation
- No shading

Adams Memorial Theatre (1000 Main Street)

- 156.9 kW; 85.5 tons of CO₂ avoided annually
- 9.8 homes' yearly energy
- Flat roof
- Close to S orientation
- No shading (parts)
- Many-sectioned roof

Chapin Hall

- 106.6 kW; 58.1 tons of CO₂
 avoided annually
- 6.6 homes' yearly energy
- E/W roof
- Slightly pitched
- No shading
- Standing seam metal
- Could be done alongside Bernhard

Bernhard Music Center (54 Chapin Hall Drive)

- 69.6 kW; 37.9 tons of CO₂
 avoided annually
- 4.3 homes' yearly energy
- Flat roof
- Close to S orientation
- No shading
- Some RTUs

Spencer Studio Art (Driscoll Hall Dr)

- 153.9 kW, 83.8 tons of CO₂
 avoided annually
- 9.6 homes' yearly energy
- Flat and barrel roof
- S, E, & W orientation
- No shading
- Fake standing seam metal

Children's Center (44 Whitman Street)

- 98.8 kW; 53.8 tons of CO₂
 avoided annually
- 6.1 homes yearly energy
- Flat roof
- Close to S orientation
- Minimal shading
- Need connection information

Honorable Mentions

- Currier/Berkshire Quad (Four Buildings)
- Simon Squash
- Danforth Block
- Chandler Commercial/Adams Block
- B&L Building
- Faculty House
- Paresky Center

"Gladden Field" and Parking Garage (near 44 North Street)

- 291.6 kW and 287.1 kW;
 159.0 and 156.0 tons of CO₂ avoided annually
- 18.1 and 17.9 homes' yearly energy
- Ground mount and carport
- Close to Gladden
- Currently empty space

Example Top Sites — Off-campus

- Indirectly contributes to emissions reductions
- Incorporates community
- Less visible.
- Potential connection costs

Grundy's Garage (Water St.)

- 164.3 kW; 89.5 tons of CO₂ avoided annually
- 10.2 homes' yearly energy
- Flat roof
- Minimal shading

Spring Street Parking Lot (Carport)

- 552.8 kW; 301.0 tons of CO₂ avoided annually
- 34.4 homes' yearly energy.
- No shading
- Connection cost questions
- Provides cover for cars
- Potential for charging

4. Recommendations for Williams

How the College should approach solar and renewables going forward

All new buildings should have solar installed

- A significant investment in property should be accompanied with a significant investment in solar
- Barring shading, ability to connect to the grid, and building permanence

Current use comes first

- Previously developed ideal for ground-mounted
- Consider wind for low impacts to land use

Williams, please consider our sites <3

- Look at the sites we suggested
- Win (carbon elimination) win (potentially cheaper because of changing incentive landscape)

Thank you!

Questions? Thoughts?